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A pulse method is descr ibed  by which the the rmal  diffusivity and the specif ic  heat can be 
m e a su r ed  with a bead m i e r o t h e r m i s t o r ,  a carbon bo lomete r ,  and a hea te r  f i lm. The thermal  
conductivit ies of seve ra l  semiconductor  and d ie lec t r ic  ma te r i a l s  have been thus determined.  

Trans ien t  methods of measur ing  the heat t r ans fe r  coefficients  offer  cer ta in  advantages over  s teady-  
state methods .  Among these advantages are  fas t  measu remen t ,  e a s i e r  pro tec t ion  against  heat losses ,  and 
the feasibi l i ty  of minia tur iz ing the tes t  apparatus .  All this applies also to pulse methods,  which a re  now 
being rapidly developed. The gis t  of these methods is that one end of the specimen is heated by pulses f rom 
a special  source .  A t empera tu re  probe at the other  end of the specimen r eco rds  the signal change in t ime.  
With the ra te  of t empera tu re  r i s e  and the magnitude of the thermal  pulse known, one can calculate the t h e r -  
mophysical  p roper t i e s  of the specimen:  its the rmal  diffusivity (a) and its specific heat per  unit volume (cp). 
The the rma l  conductivity is then found f rom the well known re la t ion k = a c p .  

The authors  have developed a method of measur ing  the the rmal  diffusivity and the specif ic  heat of 
smal l  specimens ,  the l a t t e r  being heated f rom a minia ture  hea ter  fi lm which had been deposited on the su r -  
face of a s tandard specimen.  Unlike the pulse methods where the tes t  plate is heated f rom an external  
luminous or e lec t ronic  source  [1, 2], our method is t r ea ted  in t e rm s  of a mul t i layer  heating problem.  A 
sys t em of three  adjoining l aye r s  is shown in Fig. 1. Laye r s  0 and II a re  made of s tandard mate r ia l  whose 
p roper t i e s  are  known, while the p roper t i es  of l ayer  I a re  to be determined.  On the contact  surface  between 
l aye r s  0 and I (surface 0/I) is instal led a hea te r  fi lm and on the I/II in ter face  a f i lm-type t empera tu re  probe.  
We f i r s t  consider  the ideal  one-dimensional  case ,  where the thicknesses  of hea te r  and probe are  assumed 
negligible,  while layers  0 and II are  assumed so thick that the heat losses  at the outer  ends of the sys tem 
b e c o m e  small .  In other  words,  l ayers  0 and II a re  cons idered  infinitely large .  This is always valid within 
a given tes t  t ime interval ,  if  the thickness  A of l aye r s  0 and II sa t isf ies  the inequality 
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0 l // with the subscr ip ts  0, 1, and 2 r e f e r r i n g  to l ayers  0, I, and II r e s p e c -  
. . . . . . .  ~ t ively.  The problem concerning the t r ansmiss ion  of a thermal  6-pulse 

I through the sys tem in Fig. 1 is solved by the operat ional  method [3]. As 
f I. a resul t ,  we obtain for the t empera tu re  T 1 at the I/II  in ter face  the fol-  
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mentFig" 1.of SchematiCthe standardarrange-speci- T1 = 17~D ~_,  K~ -I exp [ - - ( 2 n - - l )  2 4al td~ J]' (2) 

mens  (0, II) and the tes t  
with D = 2Q/ (b t (1  + go + gt + g~gt))- spec imen (I). 
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Fig.  2. Schemat ic  d i ag ram of 
the ins t rumenta t ion .  

If  the thickness  of l aye r  II is ze ro  and the heat t r a n s f e r  f rom the 
end sur face  of the t es t  spec imen  is negligible,  then the r e su l t  ap p ea r s  
the same  a s  (2) but with gl = 0. I t  follows f r o m  the solution to (2) that 
the t e m p e r a t u r e  curve  p a s s e s  through a m a x i m u m .  In p rac t i ce  this 
m a x i m u m  is r a t he r  f lat  and a p r e c i s e  de te rmina t ion  of the t ime  to 
r e a c h  that m a x i m u m  (tmax) is difficult .  Much m o r e  conveniently,  one 
de t e rmines  g raphica l ly  the t ime tl/2 n e c e s s a r y  for  reach ing  half the 
m a x i m u m  t e m p e r a t u r e  leve l .  

If  only the f i r s t  t e r m  of exp res s ion  (2) is re ta ined ,  then 

d? 
t~x = Am~:, - - ,  (3a) 

at 

ill2 = A1/2 ~ , (3b) 

with the numer i ca l  coeff icients  Area x = 0.5 and A1/2 = 0.135. 

Adding the second and the following t e r m s  in (2) for  a d e t e r -  
minat ion of A1/2 r e su l t s  in a sma l l  co r r ec t i on  and affects  the ca lcu -  
lated value of t he rma l  diffusivi ty according  to fo rmula  (3b) only s l ight -  
ly when A1/2 = 0.135. Thus,  with the addition of the second t e r m  in (2) 
we have A1/2 = 0.135 (1-0.02 Ki). With the en t i re  s e r i e s  in (2) added 
and with the maximum value K I = i, moreover, the correction to At/2 

based on the first term only does not exceed 3% [2]. The value of the thermal activity b I of a test specimen 

(b 0 and b 2 are assumed known) is determined from the temperature at any point on the ascending portion of 
curve (2) as, for example, from the maximum temperature Tmax: 

T~x = / ~  Dexp (--  0.5). (4) 
112 

The rea l i za t ion  of this m e a s u r e m e n t  scheme involves a few n e c e s s a r y  c o r r e c t i o n s .  F i r s t  of all,  the t h e r -  
mal  pulse has a finite width. In o rde r  to make  the e r r o r s  a r i s ing  f rom this c i r c u m s t a n c e  negligible [4, 5], 
the pulse width is chosen much s m a l l e r  than time tl/2 (with a pulse width below 0.02 tl/2 the co r r ec t i on  to 
a 1 calculated according  to (3b) is not m o r e  than 2%). Secondly, the hea te r  f i lm and the p robe  f i lm have each 
a finite th ickness .  Rega rd l e s s  of the carefu l  pol ishing of spec imens ,  f u r t h e r m o r e ,  there  appea r  contact  
junctions with nonzero the rma l  r e s i s t a n c e s  between the hea te r  f i lm and the probe  fi lm r e s p e c t i v e l y  and the 
specimen. 

We can now consider the problem of heat transmission through the the system in Fig. 1 with layer II 

thermophysically equivalent to a contact junction and a temperature probe combination. Equivalency is to 

be interpreted here as an equality between the small thickness A 2 = d 2- d i and the thermal diffusivity a 2 of 

layer II and the respective parameters of that contact junction and temperature probe combination. 

We will determine the temperature on the outer surface of layer II. For simplification, we let b I = b 0 

(go = i). The result for temperature T 2 at the outer surface of layer II is represented as a series of decay- 
ing exponential terms: 

V~t  (--  l)n K~-I exp - -  ~ + ( 2 n -  I) (5) 

Reta ining only the f i r s t  t e r m o f  s e r i e s  (5), we obtain tl/2 as in (3b) with A1/2 = 0.135 rep laced  by A1/2 as a 
function of tl/2: 

�9 A~/2= [ t  A~ 

k 

where R = ( A 2 / ( a o ) , f A ~  If  d t / ( a  t >> A j ~ a 2 ,  then the co r rec t ion  to A~/a = 0.135 may  be d i s r ega rded .  
Otherwise ,  one mus t  expe r imen ta l ly  de te rmine  At/2 as a function of tl/2 at  constant  p r o p e r t i e s  of the con-  
tact  junction and t e m p e r a t u r e  p robe .  A few co r r ec t ions  a r i s e  also f rom the cons idera t ion  of the heat  t r a n s -  
fe r  between the outer  end of layer  II and the ambient  med ium [3] (when inequali ty (1) is not sa t is f ied) .  The 
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effect of end losses  is negligible if 

Hdl ~0.1 .  

Condition Hdl/2t 1 -dl / /  -< 0.05 is sufficient for  d i s regard ing  the heat t r ans fe r  at the la tera l  specimen s u r -  
faces .  Under the ea r l i e r  specified conditions, the e r r o r  in determining a 1 according to formula  (3b) does 
not exceed 3-5%. 

A schemat ic  d iagram of the inst rumentat ion is shown in Fig. 2. The heater  f i lm I with an e lec t r ica l  
r es i s t ance  of approximately i f2 was produced by fusing s i lver  paste on the surface of a standard 20 • 10 
x 15 mm quartz base 2 with known thermophysica l  p roper t ies .  As a source  of thermal  pulses we used dis-  
charges  of a C = 650 #F capaci tor  3 controlled by a thyr i s to r  switch. The energy of a discharge pulse Cv 2 
/2 did not exceed 1.5 J,  the pulse width did not exceed 1 #sec.  The tempera ture  probe in the f i rs t  t e s tmode  
compr ised  a carbon bolometer  not thicker than 15 p and produced by a technology shown in [6], in the sec -  
ond test  mode it compr i sed  a high-sensi t iv i ty  bead m i c r o t h e r m i s t o r  5 (diameter  0.1 ram). In the f i rs t  case 
the bolometer  was deposited on the surface of a thick standard quartz  specimen (d 2-  d 1 = 1.5 cm) so as to 
sat isfy condition (1). In the second case,  the surface of the test  specimen remained free except at the point 
of contact  with the t h e r m i s t o r .  Before  installat ion into the apparatus,  specimens  4 (with charac te r i s t i c  
section dimensions f rom 3 • 3 to 5 • 5 mm and 1 to 5 m m  thick) were careful ly  polished without destroying 
their  p lane-para l le l  geomet ry .  Reliable thermal  contacts  were effected by adequate p r e s su re  and by filling 
the contact junctions with vacuum-grade  oil or g lycer ine .  In pract ice ,  under a vacuum of 10 -2 to 10 -3 mm 
Hg and T = 400"I4, end and la teral  heat losses  could be d is regarded over the entire range of thermal  con-  
ductivity of  the test  spec imens .  The signal f rom the tempera ture  probe was t ransmit ted through a bridge 
c i rcui t  6 with a model  F -301-1  amplif ier  7 and recorded  by means of a model H-326-1 high-speed ins t ru -  
ment  8. The total specimen tempera ture  was measured  with the aid of a separate  heater  9 f rom room tem-  
pera tu re  up to 100%3. The thermal  diffusivity was calculated by formula (3b). The specimen thickness was 
adjusted so as to make time ti/2 less than 1.5 sec .  When the the rmis to r  was used and tl/2 was less  than 
1.5 sec,  A1/2 depended s t rongly on tl/2 and this relat ion could be established experimental ly  on standard 
ma te r i a l s .  Within test  accuracy ,  this relat ion could be descr ibed well by express ion (6) with the value of 
R determined experimental ly ,  and it was found unaffected by the thermal  proper t ies  of the test  specimens 
(ranging f rom quar tz  to bismuth).  In the the rmis to r  m e a s u r e m e n t  A1/2 did not deviate f rom the v a l u e  A~/2 
= 0.135 by more  than 10% at tt/2 _> 1.5 sec but by as much as 50% at tl/2 = 0.75 sec.  With the use of a c a r -  
bon bolometer  A1/2became less dependent on ti/2 (because of lower R values in (6)). The e r r o r  in the t he r -  
mal  diffusivity of s tandard mate r ia l s  at room tempera ture ,  with a = 2 �9 10-7-10 -5 m2/sec ,  did not exceed 7% 
at ti/2 -~ 1.5 see and reached 15% at ti/2 = 0,5 sec .  After  the thermal  activi ty had been calculated,  the spe-  
cific heat was evaluated on the bas is  of formula  (4). Here T ~ a  x was determined f rom a p re l iminary  ca l i -  
brat ion of the tempera ture  probe.  The constant  ra t io  N ~ Q/v  of the effective Q in a thermal  pulse (per 
unit a rea  of specimen surface) to the capaci tor  voltage v squared was also determined in p re l iminary  m e a -  
su rements .  

specific heat f rom thermis to r  measuremen t s  (b 2 = 0) follows f rom The formula  for calculating the 
(4) and (3b): 

CxPl -~- B �9 al 

CoPo CoPodl Tm~x , (7) 

with the constant ]3 = 2 ~  exp(-0.5)N. The value of B is conveniently determined f rom tests  with s tandard 
ma te r i a l s .  The measu remen t  e r r o r  in the specific heat relat ive to the value according to formula (7) reached 

15-20%. 

We used this method (with a mic ro the rmis to r )  to test  at room tempera ture  severa l  mater ia l s  for 
which no or  insufficient thermal  diffusivity (and thermal  conductivity) data are  available.  

On the bas is  of the relat ions derived here,  the tes t  conditions were set up so as to keep the e r r o r  in 
the thermal  diffusivity according to (3b) within 7% of the empir ica l  formula  (6). The thermal  conductivity 
of cadmium sulfide and cadmium selenide single c rys t a l s ,  calculated f rom values of specific heat given in 
the l i tera ture ,  is 13 and 7.1 W/m.deg  respect ively .  The difference between our measurements  and the only 
available published data (20.2 W / m . d e g f o r  CdS [7] and 4.2 W / m . d e g f o r C d S e  [8]) may be due to different 
impur i ty  levels  and degrees of s t ruc tura l  perfect ion in the specimens .  Tes ts  at t empera tures  up to 100~C 
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indicate a slight drop in the thermal conductivity of CdSe at a rate of 2 �9 10 -3 deg -I. The values of thermal 

conductivity 0~ W/re. deg for the polycrystalline Seignette salt specimen and 0.42 W/m �9 deg for the amor- 
phized ternary CdGeAs 2 compound agree closely with the published data (0.42 W/m �9 deg for Seignette salt 
[8] and 0.5 W/m �9 deg for CdGeAs 2 [9]). Depending on the method of heat treatment, CdGeAs 2 appears in a 
random oriented or in an ordered crystalline form. In the latter case X = 6.5-7.8 W/m �9 deg; i.e., the ther- 
mal conductivity is 15-20 times higher than of the amorphous form. Single crystals of naphthalene have a 
low thermal conductivity, which is characteristic of compounds with weak intermolecular forces. The bond 
anisotropy results in an anisotropy of the thermal conductivit5~ in naphthalene: in the direction of high-en- 
ergy bonds, i.e., parallel to the {i00} planes ~II = 0.55 W/m .deg is 1.2 times higher than h I = 0.46 W/m 
�9 deg in the perpendicular direction. The well known published value X = 0.38 W/m .deg [i0] refers, evident- 
ly, to polycrystalline naphthalene specimens. Weaker intermolecular Van der Waals forces are responsible 
for the low value of thermal conductivity X = 0.17 W/m �9 deg obtained in our tests for polycrystalline carbon 
tetrabromide. 

a 

e 
b 
H 

P 
T1, T2 
Q 

go = b0/bl; 
g2 = b2/bl; 
g' = (go + g i ) / ( 1  + g0gi); 
K 1 = ( 1 - g ' ) / ( 1  + g ' ) ;  

K2 = ( l - g l ) / ( l  + gl); 

R = (A2/(a2) 4A~/2; 
l 
C 
Vp 
t~ax 
tl/2 
N, Amax, A1/2 
A0,2 
dl 
d2 
A 2 = d 2 - d I . 

NOTATION 

is the thermal  conductivity; 
is the thermal  diffusivity; 
is the specif ic  heat; 
is the thermal  activity;  
is the hea t - t r ans fe r  coefficient;  
is the density; 
a re  the t empera tu re  of the respec t ive  in ter face  above ambient;  
is the heat  content in a pulse,  per  unit a rea  of spec imen surface;  

is the specimen width; 
is the capacitance of the capacitor; 
is the voltage across the capacitor; 
is the time to reach the maximum temperature; 
is the time to reach half the maximum temperature; 
are  the constant  coeff icients;  
is the thickness of l aye r s  0 and II; 
is the thickness of l ayer  I; 
is the total thickness of l ayers  I and lI; 
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